

MIT HOCHGLANZGARANTIE

Der Qualitäts- und Designanspruch an seriell gefertigten Produkten steigt ständig. Werkzeugmacher sind gefordert die Ideen der Produktdesigner umzusetzen. Neben aufwändig fotogeätzten Strukturen stellt die Hochglanzfläche in der Produktgestaltung ein wesentliches Gestaltungselement dar.

Ob eine Hochglanzfläche auch die geforderte Optik erfüllt, ist sehr stark von der Werkzeugbeschaffenheit abhängig. Unreinheiten im Werkzeugstahl spiegeln sich unbarmherzig am Produkt wider. Nur mit metallurgisch hochreinen Werkzeugstählen lassen sich Hochglanzflächen realisieren.

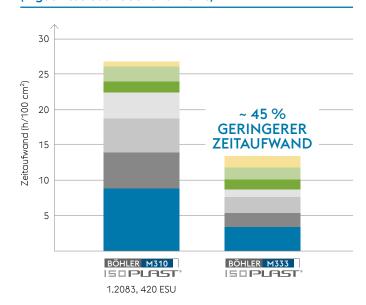
Der **BÖHLER M333 ISOPLAST** Kunststoffformenstahl ist gezielt auf diese Anforderung hin entwickelt worden und bietet Werkzeugmachern die Möglichkeit Hochglanzflächen unkompliziert und mit geringem Aufwand herzustellen.

VORTEILE AUF EINEN BLICK

- » Optimale Hochglanzpolierbarkeit
- » Verbesserte Wärmeleitfähigkeit
- » Außergewöhnliche Zähigkeit
- » Sehr gute Korrosionsbeständigkeit

EINE SPEZIELLE UMSCHMELZTECHNOLOGIE MACHT ES MÖGLICH

Mit dieser Technologie ist ein Umschmelzen in einem geschlossenen System unter Schutzgasatmosphäre möglich. Damit wird eine Erhöhung des oxidischen Reinheitsgrades und in Folge eine verbesserte Korrosionsbeständigkeit, Polierbarkeit, Fotoätzbarkeit und Erodierbarkeit des Stahles erreicht.

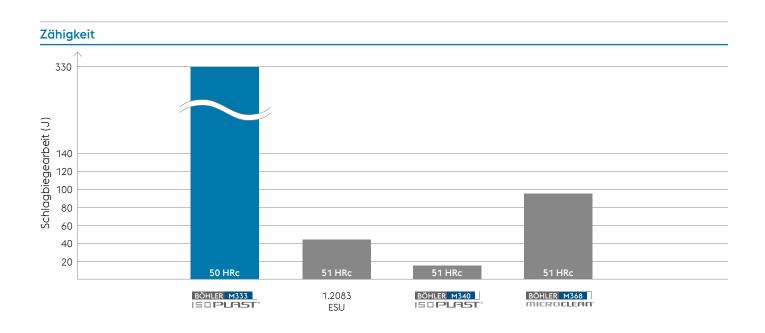

Dieses Bündel an positiven Eigenschaften gewährleistet Kosteneinsparungen, durch erhebliche Reduzierung des Polieraufwandes für Hochglanzbauteile, höhere Lebensdauer der Formeinsätze (geringerer Werkzeugbedarf, Wartungsund Reparaturaufwand, erhöhte Bruchsicherheit) und eine Erhöhung der Produktivität durch verkürzte Taktzeiten.

DAS REZEPT MIT "GLANZGARANTIE".

Chemische Zusammensetzung (Anhaltswerte in %) C Si Mn Cr Andere 0,24 0,20 0,35 13,25 +N, Mo, V, Ni

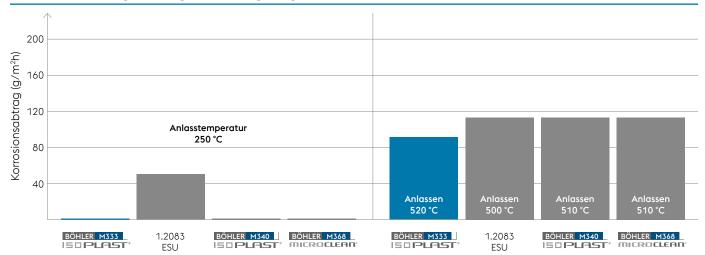
POLIEREN

Schnelles und hochwertiges Polierbild in kürzerer Zeit (Ergebnisse aus Labor und Praxis)



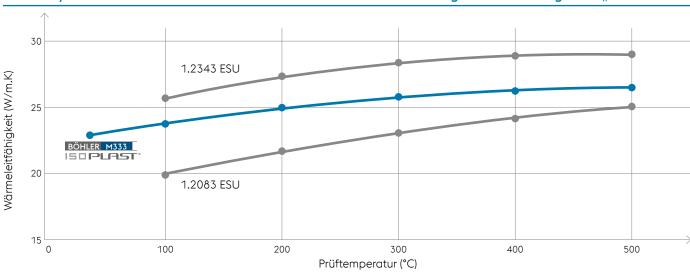
Die folgende Gegenüberstellung stellt den **Zeit-aufwand zum Erreichen einer Hochglanzoberfläche** mit Ra = 0,04 µm ausgehend von einer vorgeschliffenen Oberfläche exemplarisch dar. Weitere Details entnehmen Sie bitte aus der voestalpine BÖHLER Edelstahl Polierbroschüre.

Polierschritte

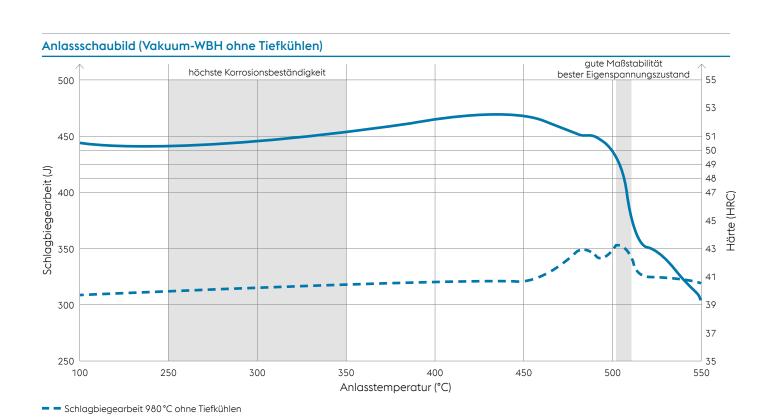

K400 K600 25 μm 14 μm 9 μm 6 μm 3 μm
grob

AUSSERGEWÖHNLICHE EIGENSCHAFTEN

Proben vom Mutterblock 403×303 mm, hoch angelassen Probengröße: $10 \times 7 \times 55$ mm (ungekerbt)

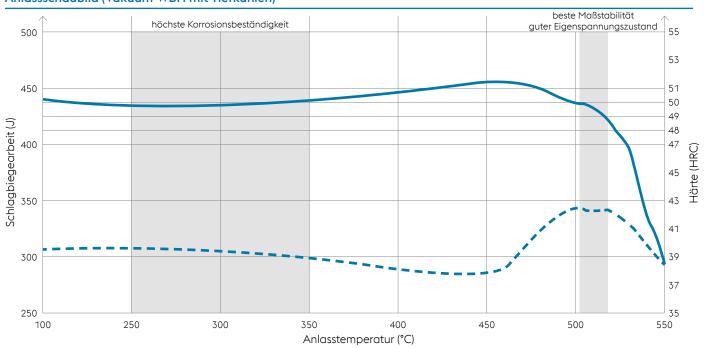

Korrosionsbeständigkeit (Essigsäure-Auslagerungstest nach DIN 50905-2)

Für höchste Korrosionsbeständigkeit niedrige Anlasstemperatur verwenden. Wärmebehandlung: ohne Tiefkühlen


Auslagerungstest: gemessen nach 24 Stunden in 20 % siedender Essigsäure

Kürzere Zykluszeit und höhere Produktivität durch verbesserte Wärmeleitfähigkeit. Ihr Werkzeug bleibt "cool".

Quelle: Materials Center Leoben Forschung GmbH, ÖGI


WÄRMEBEHANDLUNG

Härte 980°C ohne Tiefkühlen

Anlassschaubild (Vakuum-WBH mit Tiefkühlen)

■ Schlagbiegearbeit 980°C mit Tiefkühlen

— Härte 980°C mit Tiefkühlen

WÄRMEBEHANDLUNGS-EMPFEHLUNGEN

RICHTIGE WÄRMEBEHANDLUNG BRINGT OPTIMALE ERGEBNISSE

Lieferzustand

» weichgeglüht max. 220 HB

Spannungsarmglühen

- » ca. 650°C
- » nach vollständigem Durchwärmen 1 bis 2 Stunden in neutraler Atmosphäre auf Temperatur halten
- » Langsame Ofenabkühlung

Härten

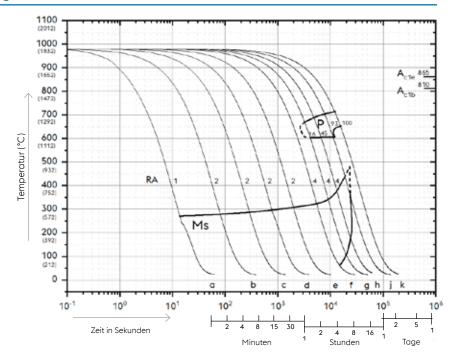
- » 980 °C möglichst rasche Abschreckung
- » Haltezeit nach vollständiger Durchwärmung: 15 30 Minuten.

Anlassen

- » Das Anlassen soll unmittelbar nach dem Härten erfolgen.
- » Es wird empfohlen dreimal anzulassen.
- » Verweildauer im Ofen 1 Stunde je 20 mm Werkstoffdicke, jedoch mindestens 2 Stunden.

Maximale Zielhärte

» 48 – 50 HRC



ZTU-Schaubild für kontinuierliche Abkühlung

Austenitisierungstemperatur: 980 °C Haltedauer: 15 Minuten 2 ... 100 Gefügeanteile in % 0,05 ... 180 Abkühlungsparameter, d. h. Abkühlungsdauer von 800 – 500 °C in s x 10⁻²

Probe	λ	HV ₁₀
а	0,05	610
b	0,40	601
С	1,10	600
d	3,00	570
е	8,00	561
f	23,00	543
g	40,00	498
h	65,00	397
j	110,00	224
k	180,00	199

Gefügemengenschaubild

K1 während der Austenitisierung nicht gelöster Karbidanteil

A Austenit M Martensit

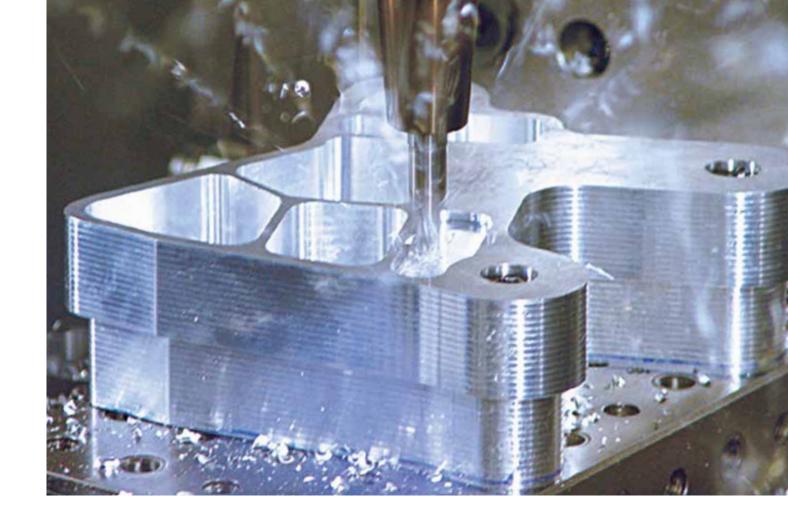
P Perlit

BEARBEITUNGSHINWEISE

Drehen			
Schnitttiefe mm	8 - 4	4 - 1	1 – 0,5
Vorschub mm/U	0,8 - 0,4	0,4 - 0,25	0,25 - 0,1
Schnittgeschwindigkeit v _c (m/min)			
BOEHLERIT LC 225 C / ISO HC-P25	110 - 150	150 - 200	190 - 300
BOEHLERIT LC 235 / ISO HC-P53	90 - 130	130 - 180	170 - 280

Wärmebehandlungszustand: weichgeglüht, Richtwerte

Fräsen			
Vorschub mm/Zahn	0,5 - 0,36	0,35 - 0,16	0,15 - 0,08
Schnittgeschwindigkeit v _c (m/min)			
BOEHLERIT LW 225 / ISO HW-P25	60 - 100	70 - 110	80 - 120
BOEHLERIT LC 225 M / ISO HC-P25	80 - 120	100 - 150	140 - 190
BOEHLERIT LC 230 F / ISO HC-P30	70 - 100	80 - 130	120 - 170


Schneidstoff-Empfehlung für Trockenbearbeitung, Richtwerte für Wendeschneidplatten-Werkzeuge, bei Einsatz von Vollhartmetall-Werkzeugen sind niedrigere Vorschübe zu verwenden.

Bohren

Domich		
Bohrerdurchmesser mm	3 – 20	20 - 54
	Voll-HM	WS-Platten
Vorschub mm/U	0,15 - 0,25	0,05 - 0,20
Schnittgeschwindigkeit v _c (m/min)		
Fette LC 640S / ISO HC-K40	50 - 100	50 - 100
BOEHLERIT R 331 / ISO HC-P30	150 - 200	150 - 200
BOEHLERIT SB 40 / ISO HW-P40	100 - 140	100 - 140

Reparaturschweißen

Die Gefahr von Rissen bei Schweißarbeiten ist, wie bei allen Werkzeugstählen, vorhanden. Sollte ein Schweißen unbedingt erforderlich sein, bitten wir Sie, die Richtlinien Ihres Schweißzusatzwerkstoffherstellers zu beachten bzw. entnehmen Sie der BÖHLER Schweißbroschüre.

ZAHLEN, FAKTEN UND DATEN

Physikalische Eigenschaften

Dichte bei	20 °C	7,70 kg/dm³
Wärmekapazität bei	20 °C	460 J/(kg.K)
Magneticierharkeit verhande		

 ${\it Magnetisier barkeit\ vorhanden}$

Quelle: Materials Center Leoben Forschung GmbH, ÖGI

Wärmel	eitfäl	hial	keit
**GITTIC	Citial	ng.	CIL

20 °C	100 °C	200 °C	300 °C	400 °C	500 °C	
22,9	23,9	25,1	25,8	26,4	27,0	W/(m.K)

Wärmeausdehnung zwischen 20 °C und ... °C

100 °C	200 °C	300 °C	400 °C	500°C	
10,50	11,00	11,00	11,50	12,00	10 ⁻⁶ m/(m.K)

Elastizitätsmodul

20 °C	100 °C	200 °C	300 °C	400 °C	500 °C	
216	212	205	198	190	180	GPa

Die Angaben in diesem Prospekt sind unverbindlich und gelten als nicht zugesagt; sie dienen vielmehr nur der allgemeinen Information. Diese Angaben sind nur dann verbindlich, wenn sie in einem mit uns abgeschlossenen Vertrag ausdrücklich zur Bedingung gemacht werden. Messdaten sind Laborwerte und können von Praxisanalysen abweichen. Bei der Herstellung unserer Produkte werden keine gesundheits- oder ozonschädigenden Substanzen verwendet.

voestalpine BÖHLER Edelstahl GmbH & Co KG

Mariazeller Straße 25 8605 Kapfenberg, Austria T. +43/50304/20-6046 F. +43/50304/60-7563 E. info@bohler-edelstahl.at www.voestalpine.com/bohler-edelstahl

